1,672 research outputs found

    Understanding the Organizational Impact of Radio Frequency Identification Technology: A Holistic View

    Get PDF
    The adoption and deployment of radio frequency identification technology (RFID) in retail supply chains results in an influx of data, supporting the development of better information and increased knowledge. This impacts not only an organization’s information technology infrastructure, but also the quality and timeliness of its business intelligence and decision-making. This paper provides an introduction to RFID technology and surveys a variety of its applications, then examines and discusses the impact of RFID technology on organizational IT infrastructure, business intelligence, and decision-making. Propositions are advanced to provide the basis for the development of specific hypotheses to be empirically tested in future studies, and a conceptual research framework for understanding the organizational impact of RFID technology is proposed. Available at: https://aisel.aisnet.org/pajais/vol2/iss2/3

    Replication of Known Dental Characteristics in Porcine Skin: Emerging Technologies for the Imaging Specialist

    Get PDF
    This study demonstrates that it is sometimes possible to replicate patterns of human teeth in pig skin and determine scientifically that a given injury pattern (bite mark) correlates with the dentitions of a very small proportion of a population dataset, e.g., 5 percent or even 1 percent. The authors recommend building on the template of this research with a sufficiently large database of samples that reflects the diverse world population. They also envision the development of a sophisticated imaging software application that enables forensic examiners to insert parameters for measurement, as well as additional methods of applying force to produce bite marks for research. The authors further advise that this project is applied science for injury pattern analysis and is only foundational research that should not be cited in testimony and judicial procedures. It supplements but does not contradict current guidelines of the American Board of Forensic Odontology regarding bite mark analysis and comparisons. A much larger population database must be developed. The project’s methodology is described in detail, accompanied by 11 tables and 41 figures

    Campo Laborde: A Late Pleistocene giant ground sloth kill and butchering site in the Pampas

    Get PDF
    The extinction of Pleistocene megafauna and the role played by humans have been subjects of constant debate in American archeology. Previous evidence from the Pampas region of Argentina suggested that this environment might have provided a refugium for the Holocene survival of several megamammals. However, recent excavations and more advanced accelerator mass spectrometry radiocarbon dating at Campo Laborde site in the Argentinian Pampas challenge the Holocene survival of Pleistocene megamammals and provide original and high-quality information documenting direct human impact on the Pleistocene fauna. The new data offer definitive evidence for hunting and butchering of Megatherium americanum (giant ground sloth) at 12,600 cal years BP and dispute previous interpretations that Pleistocene megamammals survived into the Holocene in the Pampas.Fil: Politis, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano; ArgentinaFil: Messineo, Pablo Geronimo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tandil. Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano. Universidad Nacional del Centro de la Provincia de Buenos Aires. Investigaciones Arqueológicas y Paleontológicas del Cuaternario Pampeano; ArgentinaFil: Stafford, Thomas W.. Stafford Research LLC.; Estados UnidosFil: Lindsey, Emily L.. La Brea Tar Pits and Museum; Estados Unido

    Space Station Engineering Design Issues

    Get PDF
    Space Station Freedom topics addressed include: general design issues; issues related to utilization and operations; issues related to systems requirements and design; and management issues relevant to design

    Spin resonance linewidths of bismuth donors in silicon coupled to planar microresonators

    Full text link
    Ensembles of bismuth donor spins in silicon are promising storage elements for microwave quantum memories due to their long coherence times which exceed seconds. Operating an efficient quantum memory requires achieving critical coupling between the spin ensemble and a suitable high-quality factor resonator -- this in turn requires a thorough understanding of the lineshapes for the relevant spin resonance transitions, particularly considering the influence of the resonator itself on line broadening. Here, we present pulsed electron spin resonance measurements of ensembles of bismuth donors in natural silicon, above which niobium superconducting resonators have been patterned. By studying spin transitions across a range of frequencies and fields we identify distinct line broadening mechanisms, and in particular those which can be suppressed by operating at magnetic-field-insensitive `clock transitions'. Given the donor concentrations and resonator used here, we measure a cooperativity C0.2C\sim 0.2 and based on our findings we discuss a route to achieve unit cooperativity, as required for a quantum memory

    Late Quaternary loess in northeastern Colorado: Part I—Age and paleoclimatic significance

    Get PDF
    Loess in eastern Colorado covers an estimated 14,000 km2, and is the westernmost part of the North American midcontinent loess province. Stratigraphic studies indicate there were two periods of loess deposition in eastern Colorado during late Quaternary time. The first period spanned ca. 20,000 to 12,000 14C yr B.P. (ca. 20–14 ka) and correlates reasonably well with the culmination and retreat of Pinedale glaciers in the Colorado Front Range during the last glacial maximum. The second period of loess deposition occurred between ca. 11,000 and 9,000 14C yr B.P. This interval may be Holocene or may correlate with a hypothesized Younger Dryas glacial advance in the Colorado Front Range. Sedimentologic, mineralogic, and geochemical data indicate that as many as three sources could have supplied loess in eastern Colorado. These sources include glaciogenic silt (derived from the Colorado Front Range) and two bedrock sources, volcaniclastic silt from the White River Group, and clays from the Pierre Shale. The sediment sources imply a generally westerly paleowind during the last glacial maximum. New carbon isotope data, combined with published faunal data, indicate that the loess was probably deposited on a cool steppe, implying a last glacial maximum July temperature depression, relative to the present, of at least 5–6 °C. Overall, loess deposition in eastern Colorado occurred mostly toward the end of the last glacial maximum, under cooler and drier conditions, with generally westerly winds from more than one source

    Transport Properties of One-Dimensional Hubbard Models

    Full text link
    We present results for the zero and finite temperature Drude weight D(T) and for the Meissner fraction of the attractive and the repulsive Hubbard model, as well as for the model with next nearest neighbor repulsion. They are based on Quantum Monte Carlo studies and on the Bethe ansatz. We show that the Drude weight is well defined as an extrapolation on the imaginary frequency axis, even for finite temperature. The temperature, filling, and system size dependence of D is obtained. We find counterexamples to a conjectured connection of dissipationless transport and integrability of lattice models.Comment: 10 pages, 14 figures. Published versio

    Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly

    Get PDF
    Recent studies connecting the decline of large predators and consumers with the disintegration of ecosystems often overlook that this natural experiment already occurred. As recently as 14 ka, tens of millions of large-bodied mammals were widespread across the American continents. Within 1000 yr of the arrival of humans, ∼80% were extinct including all \u3e 600 kg. While the cause of the late Pleistocene (LP) extinction remains contentious, largely overlooked are the ecological consequences of the loss of millions of large-bodied animals. Here, we examine the influence of the LP extinction on a local mammal community. Our study site is Hall’s Cave in the Great Plains of Texas, which has unparalleled fine-grained temporal resolution over the past 20 ka, allowing characterization of the community before and after the extinction. In step with continental patterns, this community lost 80% of large-bodied herbivores and 20% of apex predators at the LP extinction. Using tightly constrained temporal windows spanning full glacial to modern time periods and comprehensive faunal lists, we reconstruct mammal associations and body size distributions over time. We find changes in alpha and beta diversity, and in the statistical moments associated with periods of climate change as well as with the LP extinction event. Additionally, there is a fundamental change in the composition of herbivores, with grazers being replaced by frugivores/granivores starting about 15 ka; the only large-bodied grazer remaining today is the bison Bison bison. Moreover, the null model program PAIRS reveals interesting temporal patterns in the disassociation or co-occurrence of species through the terminal Pleistocene and Holocene. Extinct species formed more significant associations than modern ones, and formed more aggregated pairs than do modern species. Further, negative species associations were about three times stronger than positive

    The Propeptides of the Vitamin K-dependent Proteins Possess Different Affinities for the Vitamin K-dependent Carboxylase

    Get PDF
    The vitamin K-dependent gamma-glutamyl carboxylase catalyzes the modification of specific glutamates in a number of proteins required for blood coagulation and associated with bone and calcium homeostasis. All known vitamin K-dependent proteins possess a conserved eighteen-amino acid propeptide sequence that is the primary binding site for the carboxylase. We compared the relative affinities of synthetic propeptides of nine human vitamin K-dependent proteins by determining the inhibition constants (Ki) toward a factor IX propeptide/gamma-carboxyglutamic acid domain substrate. The Ki values for six of the propeptides (factor X, matrix Gla protein, factor VII, factor IX, PRGP1, and protein S) were between 2-35 nM, with the factor X propeptide having the tightest affinity. In contrast, the inhibition constants for the propeptides of prothrombin and protein C are approximately 100-fold weaker than the factor X propeptide. The propeptide of bone Gla protein demonstrates severely impaired carboxylase binding with an inhibition constant of at least 200,000-fold weaker than the factor X propeptide. This study demonstrates that the affinities of the propeptides of the vitamin K-dependent proteins vary over a considerable range; this may have important physiological consequences in the levels of vitamin K-dependent proteins and the biochemical mechanism by which these substrates are modified by the carboxylase

    Random-access quantum memory using chirped pulse phase encoding

    Get PDF
    Quantum memories capable of faithfully storing and recalling quantum states on-demand are powerful ingredients in bulding quantum networks [arXiv:0806.4195] and quantum information processors [arXiv:1109.3743]. As in conventional computing, key attributes of such memories are high storage density and, crucially, random access, or the ability to read from or write to an arbitrarily chosen register. However, achieving such random access with quantum memories [arXiv:1904.09643] in a dense, hardware-efficient manner remains a challenge, for example requiring dedicated cavities per qubit [arXiv:1109.3743] or pulsed field gradients [arXiv:0908.0101]. Here we introduce a protocol using chirped pulses to encode qubits within an ensemble of quantum two-level systems, offering both random access and naturally supporting dynamical decoupling to enhance the memory lifetime. We demonstrate the protocol in the microwave regime using donor spins in silicon coupled to a superconducting cavity, storing up to four multi-photon microwave pulses and retrieving them on-demand up to 2~ms later. A further advantage is the natural suppression of superradiant echo emission, which we show is critical when approaching unit cooperativity. This approach offers the potential for microwave random access quantum memories with lifetimes exceeding seconds [arXiv:1301.6567, arXiv:2005.09275], while the chirped pulse phase encoding could also be applied in the optical regime to enhance quantum repeaters and networks
    corecore